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Abstract
This paper describes supersymmetric quantum mechanical models S(D) of D
fermions invariant under the adjoint action of a compact simple Lie algebra g

of dimension D. It determines the spectrum, ground state properties and the
full Fock space F structure of such interacting models. It also discusses hidden
supersymmetries, partner theories and spectrum generating algebras for the
models S(D).

PACS number: 12.60.Jv

1. Introduction

Supersymmetry in general and supersymmetric quantum mechanics (SQM) in particular have
been matters of enduring interest, in which however the search for new insights may still
usefully be pursued. An aspect of SQM that has featured in our previous work [1] and
is central to the present paper is the study of purely fermionic models in SQM. We would
like to think of this as of interest in its own right, and as a means of providing tools of
use in the construction of the fermionic sectors of more general models in SQM. The study
of purely fermionic models does indeed show up features of intrinsic interest, only some
of which are shared with more general models. One shared feature concerns the existence of
hidden supersymmetries in SQM, and the emergence of partner theories for the ones originally
formulated. Early work in this general area includes [2–4] where particle motion in background
fields such as those provided by notable solutions of Einstein’s equation is studied. A more
recent paper [5] reviews the appearance of hidden supersymmetries in various models in SQM.

Suppose, in a given theory, there is found, for example from a superspace formulation,
what we will call a natural (or built in) supersymmetry with supercharge Q such that

Q2 = 0 Q†2 = 0 {Q,Q†} = 2Hq (1)
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where Hq is the Hamiltonian. Then in some cases we may be able to infer the existence of a
hidden supersymmetry, one not explicitly built into our theory, with a supercharge Q′. If this
supercharge obeys

{Q,Q′} = 0 {Q,Q′†} = 0 (2)

its existence is compatible with the natural supersymmetry, and we also have

Q′2 = 0 Q′†2 = 0 {Q′,Q′†} = 2K. (3)

Here K is some Hermitian operator for which we usually have an obvious interpretation. If
K = Hq then we have simply promoted the supersymmetry of the original formulation of the
theory from N = 1, say, to N = 2 supersymmetry, and should perhaps take account of this by
trying to generalize the superfield approach followed initially. But other obviously interesting
possibilities are well known; see, e.g., [6] for the case of motion of a particle of spin one-half
in the field of a Dirac monopole, or [7] which involves the background field of a Wu–Yang
monopole. Possibilities of the types so far mentioned are illustrated also in suitable variants of
the purely fermionic models of [1]. Again see also [5]. When K �= Hq , we may reformulate
our original theory so as to define a partner theory: the latter has K as its Hamiltonian and
Q′ as the generator of its primary supersymmetry, with Q now seen merely in the secondary
role of generator of a hidden or additional supersymmetry. In the Dirac monopole case K is
to within a constant J2, where J is the total angular momentum operator of the models, and
the partner theory describes motion confined to the sphere S2 in the presence of the Dirac
monopole field.

A class of purely fermionic models of SQM that is of good potential for our studies
involves a set of D fermions which transform according to the adjoint representation ad of
a compact simple Lie algebra g, dim g = D. Such models are of value because they can be
fully analysed and will be seen to exhibit some remarkable features. Moreover, much of the
information gathered is of potential use in more general g-invariant models, whose fermionic
sector involves adjoint fermions, e.g., the fermionic Fock space structure discussed below.

In this paper, we study N = 2 supersymmetric models S(D) of systems of D fermions
which transform under the compact simple Lie algebra g according to its adjoint representation.
Models of the type S(D) have been treated previously [5], but the analysis is carried further
here. The models S(D) possess a hidden supersymmetry generator Q′, which is compatibly
related to that of the built- in supersymmetry as in (2). But at this point a remarkable feature
emerges. The operator K of (3) is related to Hq by

K = 1
3D − Hq = C(2) (4)

where C(2) denotes the quadratic Casimir operator of g. Such a feature has not been found
in any previously analysed model. It has the curious effect that the spectrum of K is inverted
relative to that of Hq . However, the spectrum of energies of each of Hq and K is confined to
the interval 0 � E � 1

3D of the real line. Further, the partner theory P(D) of S(D) has as its
two ad-invariant ground states of energy zero the fermionic Fock vacuum, and the completely
filled state. On the other hand the ground states of S(D) itself, i.e. of Hq , which are the
highest E states of P(D), have a different but notable description, one that is valid for all g.
For any g, the ground states in question belong to the irrep � = (2, 2, . . . , 2) of g, where we
use standard highest weight notation, for which C(2) has the eigenvalue

c2(2, 2, . . . , 2) = 1
3D (5)

so that Hq has zero eigenvalue. Thus � provides the ground states of Hq , occurring 2l times
in all, so that the total ground state degeneracy is

2l dim(2, 2, . . . , 2) = 2l 3(D−l)/2 (6)
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where l = rank g. Some detailed work in the representation theory of Lie algebras, outlined
in section 7, is needed to establish the general results of this paragraph.

One might at this point very well ask if we should place the partner theory P(D) in the
primary role, viewing Hq and Q as of secondary importance. One is motivated to take such
a view by the fact that the uninverted spectrum of K is physically more sensible than that
of Hq . However, one can insist that S(D) is more fundamental because we have a natural
route towards its formulation via superfield methods, whereas no such approach to the partner
theory is known to us at present.

Our study of the models S(D) generates much other information of significance. We
are able to find the complete spectrum of the S(D), and hence of the partner theory, and a
complete description of all the corresponding eigenstates of Hq and of K. In other words we
can obtain a complete description of the Fock space F(D) of our models. Since the D = dim g

fermions of S(D) transform according to the adjoint representation ad of g, this means that,
to identify the states of each of the n-fermion subspaces Fn of F(D), we must decompose
into irreducible representations of g the totally antisymmetrized n-fold direct product ad∧n for
each n ∈ {1, 2, . . . ,D = dim g}. This can be done easily from first principles for small g,
and in general by computer program. We present results below in the form of tables for
g = a1, a2, b2, g2, a3. The results for a1 are elementary; those for a2 were found previously by
tensorial means [8]; the other cases were treated first by group theoretic methods,and confirmed
by a computer program, which also provided the dimensions and Casimir eigenvalues of each
representation of each g needed. The data presented should be of use beyond the context
of this paper. The cases b3, c3, a4 have also been fully analysed, but the data have not been
included because of the size of the tables that would be needed.

The material of the paper is organized as follows. Section 2 reviews the formulation of the
models S(D), their hidden supersymmetries and partner theories P(D). Section 3 presents
and comments on data for g of rank l � 2. This includes the listing for all relevant n of the
irrep content of each n-fermion subspace of the Fock space of each model. Section 4 explains
the results that apply to the ground states of models S(D) and P(D) for any g; however
the crucial proofs are deferred to section 7. Section 5 considers additional features that may
emerge for models with g of rank higher than 2, when higher order ad-invariant fermionic
operators enter the picture, illustrating briefly with reference to a3. Section 6 identifies the
spectrum generating algebra for S(D) invariant under any compact simple g.

Section 7 discusses the decomposition into irreps of ad∧n of g, providing, as briefly as
we found possible, background essential for understanding the general results of section 4 for
ground states.

1.1. Notation and convention

Let g be a compact simple Lie algebra with generators Xk such that

[Xi,Xj ] = icijkXk. (7)

Its adjoint representation ad is defined by Xk �→ adk

(adi)jk = −icijk (8)

and our normalizations are fixed by requiring that the Cartan–Killing form of g satisfies

Tr(adjadk) = cpqj cpqk = δjk. (9)

It follows that the quadratic Casimir operator of g

C(2) = XkXk (10)
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has, for each g, the eigenvalue

c(2)(ad) = 1. (11)

We use the informal abbreviation irrep for irreducible representation.

2. The D-fermion system

Following [5] we may employ a method based on chiral fermionic N = 2 superfields [1] to
reach a Lagrangian

L = 1
2 i(µ∗

i µ̇i + µiµ̇
∗
i ) − 2JiJ

∗
i (12)

where Ji = − 1
2 iCijkµjµk, involving the structure constants of a Lie algebra of dimension

dim g = D. The Lagrangian L is manifestly g-invariant. The canonical Dirac bracket relations
are

{µi, µ
∗
j }D = −iδij {µi, µj }D = 0 {µ∗

i , µ
∗
j }D = 0 (13)

and the classical Hamiltonian is

Hcl = 2JiJ
∗
i . (14)

The N = 2 supersymmetry of the theory follows from the fact that the supercharges

Q = 1
3 iCijkµiµjµk Q∗ = 1

3 iCijkµ
∗
i µ

∗
jµ

∗
k (15)

generate canonically the supersymmetry transformations that leave the action of the theory
invariant, and obey

{Q,Q∗}D = 2Hcl {Q,Hcl}D = 0. (16)

In the passage to the quantum theory, we write µi = ci and µ† = πi to denote the fermion
creation and annihilation operators, and impose the anticommutation relations

{ci, πj } = δij . (17)

Also the quantum Hamiltonian is given by

Hq = 1
2 {Q,Q†} = {

Ji, J
†
i

} − 1
6D. (18)

We expect Hq to be closely related to the quadratic Casimir operator of g (10), and, by
direct calculation using the Jacobi identity and (9), we find

2JiJ
†
i = N − XiXi 2J

†
i Ji = D − N − XiXi (19)

where Xi has the representation

Xi = −icijkcjπk and N = ciπi (20)

is the fermion number operator. Hence[
Ji, J

†
i

] = 1
2D − N (21)

and

Hq = 1
3D − XiXi. (22)

Despite its appearance Hq is a positive definite operator. This follows (18). Further, the
analysis of section 4 shows, by exhibiting them, that eigenstates of Hq of zero energy exist for
each simple compact g.
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Table 1. F for a1.

States n Irreps Energy E

|0〉 0 1 1
ci |0〉 1 3 0
εijkcj ck |0〉 2 3 0
Q|0〉 3 1 1

2.1. Hidden supersymmetries

It is natural in the context to consider the g-invariant fermionic operators

Q′ = q21 = 1
2 iCijkcj cjπk Q′† = q12 = 1

2 iCijkciπjπk. (23)

These operators each anticommute with each of Q = q30 and Q† = q03, and obey

{q21, q12} = 1
2XiXi q2

21 = 0 q2
12 = 0. (24)

It follows that q21 and q12 commute with XiXi and with Hq , so that they generate a hidden
supersymmetry of the original theory.

We may regard

K = Hp = XiXi (25)

as itself defining the Hamiltonian of a theory in which Q′ generates the natural supersymmetry,
and Q a hidden one. This theory is the partner theory to the original one. We do not have a
Lagrangian formulation for it but it will be seen, from the results of section 4, to have the nice
features that its ground states are the Fock vacuum and the completely filled state, and that its
highest energy eigenvalue is D/3.

3. Data for a1 = su(2), b2 = so(5), g2 and a3 = su(4)

3.1. a1 = su(2)

Here D = 3, and the Fock space F of the corresponding model contains 23 basis states, shown
in table 1.

The triplets are the ground states, of lower energy than the su(2)-invariant states. Also
energies are independent of the fermion number of a state, depending only on the eigenvalue
of C(2). Similar features are present in models for other simple compact g.

The a1 model is very simple but it nevertheless reflects the consequences of supersymmetry
that are more richly illustrated in models based on larger g. The triplet states form a doublet
from the standpoint of supersymmetry

Q′ci|0〉 = εijkcj ck|0〉. (26)

Since Q′ is su(2)-invariant, this accounts for the fact that the two triplets have the same energy
despite having different fermion numbers. Likewise the two singlets form a supersymmetry
doublet, this time with the aid of Q, cf (15), as the n = 3 entry in table 1 itself indicates.

3.2. a2 = su(3)

Here D = 8 and the construction of the basis states of the Fock space of the a2 model was
carried out by tensorial means in [8].
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Table 2. Data for a2.

d(λ, µ) (λ, µ) c2(λ, µ) Eq

1 (0, 0) 0 8
3

8 (1, 1) 1 5
3

20 (3, 0) ⊕ (0, 3) 2 2
3

27 (2, 2) 8
3 0

64 (3, 3) 5
70 (4, 1) ⊕ (1, 4) 4

Table 3. F for a2.

n dim ad∧n 1 8 20 27

0(8) 1 1
1(7) 8 1
2(6) 28 1 1
3(5) 56 1 1 1 1
4 70 2 2

Table 2 gives some data for a2, for use here and in section 8. Table 3 gives a listing of the
irreps of a2 involved in the Fock space of the a2 model S(8). The energies Eq of the states of
S(8) occurring in the Fock space are given in table 2. Here Eq is the eigenvalue for (λ, µ) of
the Hamiltonian Hq of (18):

Eq = 1
3D − c2(λ, µ). (27)

The nature of the zero energy ground states conforms to the general arguments of
section 4. The explicit construction of all the states, the analogue of the information explicitly
present in table 1, is to be found in [8], but we do not need it here. We note the reference to
the irrep 20, which is an irrep only over the real number field. Over the complex numbers
20 ≡ 10 ⊕ 10.

To describe the supersymmetry structure, we employ the somewhat loose notation |R, n〉
for some linear combination of the states of the irrep R of a2 of fermion number n.

For the case R = 8, we have

Q′|8, 1〉 = |8, 2〉 Q′|8, 4〉 = |8, 5〉 (28)

and

Q|8, 1〉 = |8, 4〉 Q|8, 2〉 = |8, 5〉 (29)

as well as

QQ′|8, 1〉 = |8, 5〉. (30)

Thus we say there is a supersymmetry quadruplet of R = 8 states with n = 1, 2, 4, 5, and in
addition another quadruplet in an evident sense Hodge-dual to it, with n = 3, 4, 6, 7. This
involves states |8, 4′〉 orthogonal to the states |8, 4〉 of (28), (29). Similarly there is a self-
Hodge-dual quadruplet of R = 20 states, and doublets with R = 1 and R = 27, together with
the duals of each.

The tensorial methods of [8] allow completely explicit versions of the statements of the
last paragraph to be made. For example, the states |8, 1〉, |8, 2〉 correspond to the adjoint
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Table 4. Data for b2.

d(λ, µ) (λ, µ) c2(λ, µ) Eq d(λ, µ) (λ, µ) c2(λ, µ) Eq

1 (0, 0) 0 10
3 35′ (0, 4) 8

3
2
3

5 (1, 0) 2
3

8
3 81 (2, 2) 10

3 0

10 (0, 2) 1 7
3

14 (2, 0) 5
3

5
3 105 (1, 4) 4

30 (3, 0) 3 1
3 84 (0, 6) 5

35 (1, 2) 2 4
3 154 (3, 2) 5

Table 5. F for b2.

n dim ad∧n 1 5 10 14 30 35 35′ 81

0(10) 1 1
1(9) 10 1
2(8) 45 1 1
3(7) 120 1 1 1 1 1 1
4(6) 210 1 1 1 1 1 1 1
5 252 2 2 2

vectors ci,Q
′ci . Using standard su(3) notation, Q′ci ∝ di, di = fijkcj ck . The vectors

ei = dijkcjdk,Q
′ei correspond to |8, 3〉, |8, 4〉, while the action of Q on all these produces the

remaining states, with, in particular, |8, 4〉′ corresponding to Qci, which is linearly independent
of |8, 4〉. We note that fijkcjdk is absent because the Jacobi identity implies that it vanishes.

We might just mention that one can pass from |1, 0〉 to |1, 5〉 using an su(3)-invariant
supercharge fifth order in fermionic variables, but we will leave systematic study of such
issues to our work on the a3 model.

3.3. b2 = so(5)

The tensorial method of attacking the structure of the Fock space F of the b2 model is
of marginal viability and then definitely unattractive, so we turn to alternative approaches.
Any such approach depends on the fact that the subspace Fn of F with fermion number
N = n, n ∈ {0, 1, . . . ,D = dim g}, carries the representation

ad∧n = ad ∧ ad ∧ · · · ∧ ad︸ ︷︷ ︸
n factors

(31)

of g. An elementary method of finding the decomposition of ad∧n into irreps for all n for
sufficiently small g is outlined in section 7. When this approach was applied to a2, it confirmed
previous results [8].

We present next some data about the irreps of b2, in table 4, followed by table 5, which
exhibits the irrep content of each Fn.

We note that only tensorial irreps of b2 arise in the decompositions of ad∧n for b2. These
all have even µ, whereas spinorial irreps have odd µ-values.

Table 5 accounts for all the 210 = 1024 states of F . The supersymmetry multiplet
structure—doublets and quadruplets—reflects the same properties as were seen for a2: one
R = 1 doublet, one quadruplet for each of R = 10 and R = 35, together with Hodge duals of
each of these; one self-dual quadruplet for each of R = 5, 14, 30, 35, and finally one doublet
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Table 6. Data for g2.

d(λ, µ) (λ, µ) c2(λ, µ) Eq d(λ, µ) (λ, µ) c2(λ, µ) Eq

1 (0, 0) 0 14
3 273 (3, 0) 9

2
1
6

7 (0, 1) 1
2

25
6 286 (2, 1) 7

2
7
6

14 (1, 0) 1 11
3 378 (0, 5) 25

6
1
2

27 (0, 2) 7
6

7
2 448 (1, 3) 15

4
11
12

64 (1, 1) 7
4

35
12 729 (2, 2) 14

3 0

77 (2, 0) 5
2

13
6

77′ (0, 3) 2 8
3 924 (1, 4) 5

182 (0, 4) 3 5
3 1547 (2, 3) 6

189 (1, 2) 8
3 2

Table 7. F for g2.

n dim ad∧n 1 7 14 27 64 77 77′ 182 189 273 286 378 448 729

0(14) 1 1
1(13) 14 1
2(12) 91 1 1
3(11) 364 1 1 1 1 1
4(10) 1001 1 1 1 1 1 1 1
5(9) 2002 1 1 1 2 2 1 1 1 1
6(7) 3003 1 1 1 1 2 1 2 1 1 1 1 1
8 3432 2 2 2 2 2 2 2

for R = 81 plus its dual. The ground states of the system are again provided by the highest
irreps, R = (2, 2) = 81 with c2(R) = 10

3 so that (22) gives E = 0.

3.4. g2

Data for g2 are in table 6, and the Fock structure can be read off table 7. The supersymmetry
multiplet structure is qualitatively as for the smaller rank two Lie algebras, only more
complicated. For example, for R = 77′ = (0, 3), we find three quadruplets, one self-Hodge-
dual, the other pair dual to each other. Also for R = 189 = (1, 2), one gets a quadruplet and
a doublet, plus the duals.

Again the irrep R = (2, 2) = 729 provides the zero energy ground states of the system,
since c2(729) = 14

3 and D = dim g2 = 14.

4. The ground states for any simple compact g

The method outlined in the appendix for the decomposition of ad∧n tells that at the stage at
which n = 1

2 (D− l), the highest weight is the sum of all the positive roots, 2δ = (2, 2, . . . , 2).
So an irrep with this highest weight certainly occurs in the decomposition of ad∧n, and hence
in the Fock space of the models S(D). In fact no irrep of higher highest weight occurs, and,
for g of rank l, the irrep of highest weight 2δ occurs 2l times in the Fock space of S(D). Proof
of this is indicated in section 7. It can be seen that the data in the tables agree with the claim.
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We now use well-known formulae [9] for the dimension dim(�), and the eigenvalue
c2(�) of the quadratic Casimir operator of an irrep of g of highest weight �, namely

dim(�) = �pos.roots

(
1 +

�.α

δ.α

)
(32)

and

c2(�) = (�,� + 2δ). (33)

For our irrep of highest weight 2δ, these formulae give

dim(2δ) = dim(2, 2, . . . , 2) = 3(D−l)/2 (34)

and

c2(2δ) = c2(2, 2, . . . , 2) = 8(δ, δ) = 1
3c2(ad)D = 1

3D. (35)

In this last equation we have used the strange formula [10], p 119, to evaluate (δ, δ), and also
the result c2(ad) = 1 of our normalization convention (9).

It now follows from (22) for Hq and (35) that the states of the irreps 2δ = (2, 2, . . . , 2)

provide zero energy ground states of S(D) for each simple compact Lie algebra g. Further the
ad-invariant Fock vacuum and the completely filled Fock space state, also ad-invariant, are
the states of highest energy D/3 of Hq . They are, however, the ground states of the partner
theories P(D).

We have already commented (a) that the spectrum of the P(D) is inverted with respect
to that of the original model S(D) and thus of more physically natural appearance, and (b) on
the point of view of P(D) vis-á-vis S(D) that this affords.

5. The rank three Lie algebra a3 = su(4)

5.1. Irrep and Fock space data

The following tables give information about irreps of a3, and about the Fock space F =∑15
n=0 Fn. Only irreps (λ, µ, ν) for which λ+ν is even occur in the analysis of S(D) for a3. In

other words only the irreps of even quadrality of a3 [9] occur; these are the tensorial irreps of d3,
which is isomorphic to a3. Also (λ, µ, ν) is self-conjugate if and only if λ = ν, and table 8 lists
only one member of any conjugate pair of representations. Also all the irreps of a3 irreducible
over the reals are either self-conjugate or else are the direct sums of conjugate pairs. In
table 9, for the sake of brevity, we have written

70 = 35 ⊕ 35 90 = 45 ⊕ 45 512 = 256 ⊕ 256 560 = 280 ⊕ 280. (36)

In view of this use of the notation 70 in table 9, a prime is used for 70′ = (3, 0, 1) in table 8.
The energy eigenvalue of any state of the a3 Fock space follows from (22) for D = 15,

and can be read off table 8.

5.2. Remarks about higher order fermionic invariants

We may expect to find, for theories whose invariance algebra is a Lie algebra of rank 3 or
higher, not only properties qualitatively like those seen in section 3 for rank 2 Lie algebras,
but some additional ones. We begin by reviewing some material from [5].

For Lie algebras of rank higher than 2 new g-invariant fermionic operators enter the scene
[5], such as

Q5 = 1
5	ijklmcicj ckclcm Q7 = 1

7 i	ijklmpqcicj ckclcmcpcq (37)
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Table 8. Data for a3.

d(λ, µ, ν) (λ, µ, ν) c2(λ, µ, ν) Eq d(λ, µ, ν) (λ, µ, ν) c2(λ, µ, ν) Eq

1 (0, 0, 0) 0 5 85′ (0, 6, 0) 45
8

6 (0, 1, 0) 5
8 105 (0, 4, 0) 4 1

10 (2, 0, 0) 9
8 175 (1, 2,1) 3 2

15 (1, 0, 1) 1 7
2 189 (5, 0, 1) 5

20 (0, 2, 0) 3
2

7
2 196 (0, 5, 0) 45

8

35 (4, 0, 0) 3 2 256 (3, 1, 1) 15
4

5
4

45 (2, 1, 0) 2 3 270 (4, 0,2) 37
8

50 (0, 3, 0) 21
8 280 (2, 3, 0) 9

2
1
2

64 (1, 1, 1) 15
8 300 (2, 1, 2) 29

8

70′ (3, 0, 1) 21
8 300′ (3, 0, 3) 9

2
1
2

84 (2, 0, 2) 5
2

5
2 729 (2, 2, 2) 5 0

Table 9. F for a3.

n dim ad∧n 1 15 20 70 84 90 105 175 300′ 512 560 729

0(15) 1 1
1(14) 15 1
2(13) 105 1 1
3(12) 455 1 1 1 1 1 1 1
4(11) 1365 2 2 1 2 1 1 2 1
5(10) 3003 1 2 1 2 3 1 3 1 2 1
6(9) 5005 3 1 1 3 3 5 2 2 2 1
7(8) 6435 1 2 3 1 4 3 2 5 1 3 1 3

where 	5, and 	7 are totally antisymmetric ad-invariant tensors of ranks 5 and 7 [11, 12]
and their adjoints. The available tensors correspond to the cohomology cocycles of the Lie
algebras in question, so that we might also write Q = Q3. However, 	5 occurs only for the an

family, see, e.g., [13]. Only for an for n > 3 does 	5 enter our analysis non-trivially. While
it is well defined for a2, Hodge duality obviates the need for explicit use of it, and the same
applies to 	7 for b2 and 	11 for g2.

We need to consider various g-invariant spinorial quantities, using the notation

q30 = Q = 1
3 iCijkcicj ck

q21 = Q′ = 1
2 iCijkcicjπk

q12 = Q′† = 1
2 iCijkciπjπk

q03 = Q† = 1
3 iCijkπiπjπk

q50 = Q5 = 1
5	ijklmcicj ckclcm

q41 = 1
4	ijklmcicj ckclπm

q32 = 1
6	ijklmcicj ckπlπm.

(38)

From the standpoint of the partner theory P(D) of S(D), with Hamiltonian Hp = K and
natural supercharges q21 and q12, one learns from analysis of possibilities drawn from (38)
that q50 and q05 each anticommute with each of q21 and q12, and so are hidden conserved
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supercharges. This result, given in [5], can be checked with the aid of generalized Jacobi
identities to be found in [12]. A similar result [5] holds also for q70 = Q7 and q07.

From the standpoint of S(D) itself with Hamiltonian Hq and natural supercharges q30

and q03, one finds

{q30, q0s} �= 0 {q03, q50} �= 0. (39)

This does not cause inconsistency with [Q5,Hq] = 0, which only requires that the operator
of (39) commute with Q† = q03, which it does.

The remarks of the previous paragraphs do not exhaust what can usefully be said. For
Fock space considerations, one can employ a suitable set of anti-commuting g-invariant spinor
operators, drawn from a list such as (38), to generate, from some state |R,φ〉 transforming
under g according to some irrep R of g, states of higher fermion number which also transform
according to R. In section 3, we used Q and Q′ to construct doublets and quadruplets. For
a3,Q5 enters the picture non-trivially. If we consider the set of spinorial invariants, all of
which commute with Hq ,

Q′ = q21 Q = q30 Q5 = q50 (40)

an anticommuting set of operators which change fermion number by 1, 3, 5, we might expect
to find supersymmetry related octuplets in the Fock space belonging to the same R. We note
that q41 could be added to (40), but this does not appear to yield immediately useful additional
information.

Thus, if |�〉 is a Fock space state with fermion number n, then the set of eight states

|�〉,Q′|�〉,Q|�〉,Q5|�〉,Q′Q|�〉,Q′Q5|�〉,QQ5|�〉,QQ′Q5|�〉 (41)

should yield an octuplet of states of a given irrep R of a3 with fermion numbers

n, (n + 1), (n + 3), (n + 5), (n + 4), (n + 6), (n + 8), (n + 9). (42)

A promising place in which we might search for such octuplets is found in the case of the
irrep 15 = ad. We can find quadruplets of 15’s with the following fermion numbers:

{1, 2, 4, 5}, {3, 4, 6, 7}, {5, 6, 8, 9}, {6, 7, 9, 10}, {8, 9, 11, 12}, {10, 11, 13, 14}
(43)

and may expect to connect these pairwise into octuplets, by action on the first three of Q5,
although supplying detail is probably out of the question. One can examine other possibilities
using the data in table 7.

Another interesting set of invariants is Q = Q3,Q5,Q7. Acting on the Fock vacuum,
one finds this set of a3 singlet states

|0〉,Q|0〉,Q5|0〉,Q7|0〉,QQ5|0〉,QQ7|0〉,Q5Q7|0〉,QQ5Q7|0〉 (44)

of respective fermion numbers 0, 3, 5, 7, 8, 10, 12, 15. These states correspond exactly to the
terms of the Poincaré polynomial, see [13],

P(x) = (1 + x3)(1 + x5)(1 + x7) (45)

of a3. Obviously this is a general result, valid in evident form for each g. We note Q′|O〉 = 0,
so that Q′ is absent from (44).

Finally, one might ask what operator, which commutes with fermion number and with
the action of a2, accounts for the degeneracy of the two irreps 8 and 27 for ad∧4 for a2.
Similar questions arise for other g. In this context we can say the following. For a2, the
anticommutator of Q = q30 and q14 has equal numbers of ci and πi and, with a factor i in the
definition of Q and not in q14, defines a Hermitian operator V

V = {Q,q14} ∝ icidjπkπlπm	ijklm di = cijkcj ck. (46)
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Using the methods and the notation of [8], this gives rise to

|8, 4〉 ∝ V |8, 4〉′ (47)

which may be placed alongside the results (28)–(30) noted in section 3.2.

6. Spectrum generating algebras

The spectrum generating algebra A(S) of a quantum mechanical system S is defined as
follows. It is that Lie algebra A(S), or possibly Lie superalgebra, such that the vector space
of states of S is the carrier space of a single irrep of A(S).

For the models S(D) of g-invariant systems of D fermions, D = dim g, that are the
subject of the present study, we have

A(S) = so(2D + 1). (48)

In fact the Fock space of S(D) coincides with the spinor representation of so(2D + 1), each
one possessing the dimension 2D.

To explain the origin of so(2D + 1) in our considerations, we employ the 2D fermionic
variables ci, πi, i ∈ {1, 2, . . . ,D}, subject to (17). The largest Lie algebra that we can build
with generators quadratic in these variables involves

[ci, πj ], cicj , πiπj (49)

and these close on an algebra of dimension

D2 + 2
[

1
2D(D − 1)

] = dim so(2D). (50)

Also the subspaces of the Fock space of states of even and of odd fermion number are seen
to be carrier spaces for the two spinor irreps of so(2D). Further the set (49) of generators of
so(2D) reflect the symmetric Lie algebra structure that is typical of a Hermitian symmetric
space, in this case SO(2D)/U(n). Explicitly, we have

g = h + n+ + n− (51)

where the entries in (49) are the generators of the three subalgebras taken in the same order.
It is obvious that h = u(n), that n± are Abelian and that [n+, n−] ∩ h.

To reach A(S) = so(2D + 1), requires us to add, to our set ci, πi of basic variables, a
single Majorana fermion variable c such that

c = c† c2 = 1 {c, ci} = 0 {c, πi} = 0. (52)

Then the 2D = dim so(2D + 1) − dim so(2D) generators needed to complete our realization
of so(2D + 1) are

cci and cπi. (53)

As long as we consider a single system S(D), the role of c is, for most purposes—but
see [14]—trivial. However if one wishes to consider a composite system of two independent
realizations of S, the fermionic nature of the single Majorana fermions contained in each one,
needs to be fully respected to achieve a consistent formalism.

For a single S putting c = 1 we see that the generators (53) change the fermion numbers
of states by ±1, so that the Fock space carries an irrep of so(2D + 1). It is the spinor irrep of
dimension 2D .

This is consistent with reduction back to the so(2D) view, since the spinor irrep of
so(2D + 1) decomposes into the two spinor irreps of so(2D).
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It is clear that so(2D + 1) is not an invariance algebra of S(D). How then is the actual
invariance algebra g, dim g = D related to (embedded in) so(2D + 1)? It is generated by the
subset

Xi = −icijkcjπk i, j ∈ {1, 2, . . . ,D} (54)

of the generators (49) of so(2D). The remaining generators linear in each of the ci and πi can
be separated into sets which transform under g according to each of the remaining constituents
of the representation ad ⊗ ad of g. These however cannot be expected to commute with Hq .

7. Decomposition of ad∧n into irreps

For the purpose of assembling the data in tables 3, 5, 7 and 9, it is probably sufficient to state
that these contain output from a C++ program designed to produce Lie algebra data such as this,
and the Casimir eigenvalues needed in tables 2, 4, 6 and 8. In every case treated the results
presented conform to the results of section 4 about the ground states of the models S(D).
However, to understand the latter results as general results, valid for each simple compact g,
requires us to present some detailed analysis of ad∧n for g. The purpose of this section then is
to carry this analysis just far enough to explain, clearly and in general, the emergence of the
results relating to the irrep (2, . . . , 2) of g.

A full treatment of the decompositions of ad∧n, n = 0, 1, 2, . . . ,D = dim g into irreps
of (simple compact) g can be based on a generating function for the characters of ad∧n.

Let l be the rank of g, and p = (D − l)/2 be the number of positive roots.
Let χ[n](g) = Tr (g)∧n be the character of the totally antisymmetrized n-fold product

of a k × k unitary matrix representation g �→ (g) of a compact simple Lie group. Let
λ1, λ2, . . . , λk be the eigenvalues of (g). Then we have the generating function

k∑
n=0

xnχ[n](g) =
k∏

j=1

(1 + xλj ) χ[n](g) = Tr (g)∧n. (55)

Results of this type originate in the work of Molien [15]. A proof in the totally symmetrized
case can be found in [16], see p 93 and p 203. Adaptation of this proof to the present case is
easy.

In the case of  = Ad, where Ad, as an irrep of the Lie group G, is related by exponentiation
to the irrep ad of the Lie algebra g of G, we have

χad(g) = Tr (g) = Tr exp i
∑

j

ajHj =
∑

r

exp ia · r (56)

where the Hj are the matrices for ad of the Cartan generators of g, and the second sum is over
all the weights of ad, i.e. over the roots of g, including the l null ones.

Suppose that the expansion of a root r of g with respect to the simple roots αj , j =
1, 2, . . . , l of g reads as

r =
l∑

j=1

xjαj (57)

where the xj are non-negative integers for positive r, and that a has components cj , j =
1, 2 . . . , l, with respect to the dual basis. Then it follows that

exp ia · r =
l∏

j=1

exp icjxj =
l∏

j=1

tj
xj tj = exp icj (58)
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and hence that
D∑

n=0

xnχ[n](t1, . . . , tl ) =
∏

all roots


1 + x

l∏
j=1

tj
xj


 . (59)

The product has one factor for each positive and each negative root,and the null root contributes
a factor (1 + x)l to the right-hand side of (59). Equation (59) provides the required generating
function.

The coefficient of x gives back again the expression

χ[1] = χad =
∑

all roots


 l∏

j=1

tj
xj


 =

∑
all roots

exp ia · r. (60)

The highest root rp of g features here as the highest weight ad .
From (59), it can be seen that, for each n, 1 � n � p, the highest weight of g contained

in χ[n] must be the sum of some set of n distinct positive roots of g. For the (well-understood)
case of n = 2, there is, for all g except al , a partial ordering of roots by height of the
sort rp > rp−1 > rp−2 so that there is in ad∧2 an irrep of g of easily identified highest
weight equal to rp + rp−1. For n = 2 and al , the corresponding partial ordering reads
rp > rp−1, rp−2 > rp−3, and we are led to a complex conjugate pair of irreps of al of highest
weights rp + rp−1 and rp + rp−2.

There is an algorithm available [17] for each n, 1 � n � p, for finding suitable sums of
n distinct roots of g that lead to the identification of certain ‘leading’ irreps of g contained in
the decomposition of the corresponding ad∧n. However, for the limited purpose of explaining
the key result of section 4, we do not need to develop this. In the special and relevant case
of n = p, it follows from (59) that the highest weight of ad∧p is equal to the sum of all the
positive roots of g, the unique way of taking the sum of distinct positive roots when n = p.
In other words, in the n = p term of (59), we use the second term of each positive root factor,
and the trivial term of the null and negative root factors. Since the sum of all the positive roots
of g is equal to 2δ, it follows that the irrep of this highest weight, 2δ = (2, . . . , 2) in Dynkin
notation, is contained in ad∧p for any g. This is the result that section 4 needs. Much more
can be said in the general area in question here, and we refer to [17] for this.

Going on to ad∧(p+r), r ∈ {1, 2, . . . , l}, it is clear that no terms of weight greater than 2δ

can be found in χ[p+r], and the best that can be done is to use the x-terms of r of the factors
(1 + x)l of (59). It follows that the irrep of highest weight 2δ occurs

(
l

r

)
in ad∧(p+r) times

for each g, and hence 2l times in all, as noted in section 1. Going beyond n = p + l brings
the negative weights into the picture, but it is not necessary to dwell on this: it is obvious that
ad∧n and ad∧(D−n) are equivalent.

It is straightforward to use (59) to deduce, for small enough g (which covers all the cases
discussed here) the complete decomposition into irreps of ad∧n for all n. Assuming initially
that one knows all the relevant characters, one notes the highest weight that occurs in χ[n], and
subtracts from χ[n] the character of the corresponding irrep. One next finds the highest weight
term of the remainder of χ[n], and again subtracts the character of the corresponding irrep,
and so on until there is no remainder. In fact, the required characters can, for n = 1, 2, . . . ,

be systematically found as they are needed. One starts with the knowledge (60) of χad , and
perhaps also the easily found character of the defining irrep of g. When one first needs a new
character, one seeks, and can always find, a direct product of irreps, such that the character
of each factor is known, as are all the characters in the decomposition except that of the one
sought. This process was carried through for the three rank two Lie algebras and for a3, ahead
of confirmation of the results by C++ program. It is especially tractable for the rank 2 algebras
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where Speiser’s rule [18] makes it easy to decompose any twofold direct product graphically
into irreps.
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